SEMINARIO 2020/09 CRUZ DEL SUR

Alrededor de un problema de transición de fases

Viernes 21 de agosto. Auditorio Prof. Manuel López Ramírez. de Matemática y Estadística UFRO. 16:30 Hrs.

Conferencista: Erwan Hingant, Universidad de Bío-Bío

 Abstract

En esta presentación introduciremos un modelo de transición de fase llamado Becker-Döring. Veremos diferentes niveles de modelamiento asociado, a través de cadena de Markov, de ecuaciones diferenciales ordinarias, y también parciales. Presentaremos algunos resultados recién donde conectamos estos niveles de modelamiento, y también una nueva manera de interpretar matemáticamente el fenómeno de transición de fase.

SEMINARIO 2020/08 CRUZ DEL SUR

Automorphism Groups of Riemann Surfaces

Viernes 07 de agosto. Auditorio Prof. Manuel López Ramírez. de Matemática y Estadística UFRO. 16:00 Hrs.

Conferencista: Jennifer Paulhus, Grinnell College

 Abstract

 Riemann surfaces are classical mathematical objects which are still a hot topic of re search today. They are analytic structures which are also manifolds, and there is a natural group action on them (in the form of automorphism groups). As such, we can use analysis, topology, and algebra to study them. This talk will introduce Riemann surfaces and their automorphism groups, focusing on the algebraic side. We will end with some recent re search on these automorphisms, as well as applications to Jacobian varieties. This research includes work by, and with, several Chilean colleagues.

SEMINARIO 2020/07 CRUZ DEL SUR

The sharp exponent in the study of the nonlocal hénon equation in RN. A liouville theorem and an existence result

Viernes 24 de julio. Auditorio Prof. Manuel López Ramírez. de Matemática y Estadística UFRO. 16:30 Hrs.

Conferencista: A. QUAAS, Universidad Técnica Federico Santa María

 

 

SEMINARIO 2020/06 CRUZ DEL SUR

Sobre coeficientes de Fourier que caracterizan a las formas cuspidales de Siegel

Viernes 24 de julio. Auditorio Prof. Manuel López Ramírez. de Matemática y Estadística UFRO. 16:30 Hrs.

Conferencista: Yves Martin, Universidad de Chile

Abstract.

Cada forma modular cuspidal de Siegel de grado 2 se caracteriza completamente por una serie de Fourier cuyos coeficientes están indexados por J, el conjunto de todas las matrices de 2 por 2, semi-enteras, positiva-definidas.
En esta charla discutiremos el problema de encontrar K, un subconjunto propio de J, que sea suficiente para caracterizar todas esas formas cuspidales. En particular, presentaremos como solución un conjunto K consistente de matrices diagonales.

 

SEMINARIO 2020/05 CRUZ DEL SUR

The volume of a compact hyperbolic tetrahedron in terms of its edges

Viernes 17 de julio. Auditorio Prof. Manuel López Ramírez. de Matemática y Estadística UFRO. 16:30 Hrs.

Conferencista: José Pablo Mujica, Universidad Técnica Federico Santa María

Abstract.
In this talk we discuss some of the ideas of GSPT and describe the dynamic of a family of slow-fast systems with one fast and two slow variables. The focus is on a bifurcation that occurs in the slow dynamics known as a folded saddle node of type II. This scenario provides a crash between classical dynamical systems and slow-fast systems, in the sense that there is an interaction of a slow manifold with a global invariant manifold.