SEMINARIO 2021/06 CRUZ DEL SUR

Representaciones de Grupos y Métodos de Construcción

Viernes 30 de abril. Vía ZOOM UFRO. 16:00 Hrs.

Conferencista: Luis Gutiérrez Frez. Universidad Austral de Chile

 Abstract

La estructura de grupos ha jugado un papel unificador entre diversas áreas: un par de ejemplos clásicos vienen dado por la teoría de Galois de ecuaciones polinomiales y la caracterización de las Geometrías vía el programa de Klein. Un ejemplo más reciente y en pleno desarrollo es proporcionado por el programa de Langlands, el cual conjetura una preciosa conexión entre teoría de números y teoría de representaciones de grupos lineales. Esta charla se inscribe en el marco mencionado previamente, es decir, el estudio de representaciones de grupos R(G). Una representación de un grupo G es básicamente una forma de ver G como un grupo de matrices. En primer lugar presentaremos los principales conceptos, propiedades y ejemplos de la teoría general de R(G). A continuación, mostraremos resultados acerca de grupos clásicos producidos de la construcción de una clase de representaciones de los grupos simplécticos Sp2n(V) sobre cuerpos localmente compactos, construidas por André Weil en 1964, representaciones que hoy en día llevan su nombre. En estas ´ultimas décadas se ha generalizado este tipo de representaciones a grupos unitarios U(2m, B) asociados a formas ε-hermitianas sobre B-módulos de rango finito 2m, donde B es un anillo involutivo no necesariamente cuerpo. Por ´ultimo, nos gustaría presentar un par de resultados recientes en este contexto, en el cual hemos podido contribuir.

ZOOM