SEMINARIO 2021/03 CRUZ DEL SUR

¿Se puede oír la forma de un tambor?

Viernes 22 de enero. Auditorio Prof. Manuel López Ramírez. de Matemática y Estadística UFRO. 16:30 Hrs.

Conferencista: Emilio Lauret, Universidad Nacional del Sur, Bahía Blanca, Argentina

 Abstract

El espectro del operador de Laplace asociado a un objeto geométrico compacto (e.g. un dominio acotado en el espacio euclídeo, o una variedad Riemanniana cerrada) codifica el sonido que éste haría al ser golpeado. Pensando a un dominio acotado del plano como un tambor, Mark Kac escribió en 1966 el artículo "Can one hear the shape of a drum?" que popularizó la geometría espectral inversa, área que estudia en qué medida la información espectral (i.e. sabemos cómo se oye el tambor al ser golpeado) determina la geometría (i.e. la forma del tambor). En esta charla daremos una idea general del problema, repasando su historia y considerando diversos ejemplos de variedades Riemannianas isospectrales
(i.e. tienen el mismo espectro) que no son isométricas (i.e. tienen distinta forma). Será destinada a un público amplio, sin necesidad de tener conocimientos previos en geometría Riemanniana.