SEMINARIO 2020/12 CRUZ DEL SUR

Entropía topológica para semiflujos discontinuos

Viernes 25 de septiembre. Auditorio Prof. Manuel López Ramírez. de Matemática y Estadística UFRO. 16:30 Hrs.

Conferencista: Nelda Jaque, Universidad de Chile

 Abstract

Se mostrará un ejemplo de un semi flujo discontinuo actuando sobre un espacio métrico compacto, donde las entropías topológicas de Bowen, basadas en conjuntos separados y conjuntos generadores, no dan información acerca de la caoticidad del sistema. Luego, se darán variaciones de las entropías de Bowen, las cuales pueden ser aplicadas al estudio de semi flujos no necesariamente continuos. Se probará que estas variaciones de entropía se reducen a las de Bowen cuando el semi flujo es continuo. Además, se comparan estas variaciones con la  "" -entropia de un semi flujo no necesariamente continuo, que resultan ser cotas inferiores. Para analizar, se presentarán los sistemas impulsivos regulares, un tipo especial de sistemas discontinuos. Y se mostrará que en un sistema impulsivo regular, existe un semi flujo continuo actuando sobre un compacto que es semiconjugado al semi flujo del sistema impulsivo regular, y que la entropía topológica del continuo es igual a la variación de entropia usando conjuntos separados del impulsivo regular.