SEMINARIO 2020/16 CRUZ DEL SUR

Iterated sparse discriminants and singular intersections of hypersurfaces

Viernes 04 de diciembre. Auditorio Prof. Manuel López Ramírez. de Matemática y Estadística UFRO. 15:30 Hrs.

Conferencista: Alicia Dickenstein, Universidad de Buenos Aires

 Abstract

It is well known that two generic quadric surfaces intersect in a nonsingular quartic space curve, but when the intersection is not transverse this intersection curve may degenerate to a finite number of different possible types of singular curves. In the nice paper by Farouki et al. (1989), the authors formulate a way of computing the condition for a degenerate intersection in this case, which refines in the real case and with an algorithmic point of view a classical treatise by Bromwich (1906). Independently, Schl i (1953) studied the degenerate intersection of two hypersurfaces described by multilinear equations.
In joint work with S. di Rocco and R. Morrison, we present a general framework of iterated sparse discriminants to characterize the singular intersection of hypersurfaces with a given monomial support A, which generalizes both previous situations. We study the connection of iterated discriminants with the notion of mixed discriminant and the singularities of the sparse discriminant associated to A.

SEMINARIO 2020/17 CRUZ DEL SUR

Algebraic curves with automorphism groups of large prime order

Viernes 11 de diciembre. Auditorio Prof. Manuel López Ramírez. de Matemática y Estadística UFRO. 15:30 Hrs.

Conferencista: Pietro Speziali, Universidade de Sao Paulo - Brasil

 Abstract

Let X be a (projective, algebraic, non-singular, absolutely irreducible) curve of genus g defined over an algebraically closed field K of characteristic p greater than or equal to 0, and let q be a prime dividing the cardinality of the automorphism group Aut(X) of X. We say that X is a q-curve. In his seminal work (1980) Homma proved that either q is less than or equal to g+1 or q = 2g+1, and classified (2g+1)-curves up to birational equivalence. In this talk, (based on a joint work with Nazar Arakelian) we give the analogous classification for (g + 1)-curves, including a characterization of hyperelliptic (g + 1)-curves. Then, we provide the characterization of the full automorphism groups of q-curves for q = 2g + 1, g + 1 in any characteristic. Here, we make use of two different techniques: the former case is handled via a result by Vdovin bounding the size of abelian subgroups of finite simple groups, the second case is solved via the classification by Giulietti and Korchmros of automorphism groups of curves of even genus. Finally, we give some partial results on the classification of q-curves for q = g; g - 1. Our talk will also highlight the challenges of studying automorphism groups of algebraic curves in positive characteristic.

SEMINARIO 2021/01 CRUZ DEL SUR

Grupo de Galois de pq-cubrimientos

Jueves 07 de enero. Auditorio Prof. Manuel López Ramírez. de Matemática y Estadística UFRO. 17:30 Hrs.

Conferencista: Angel Carocca, Universidad de la Frontera

 Abstract

En esta presentación estudiaremos (y determinaremos completamente) el grupo de Galois del cubrimiento factorizado  φoψ ; donde ψ es un cubrimiento étale cíclico de grado q y φ' es un cubrimiento totalmente ramificado de grado p para cualquier par de números primos q ≠ p y p impar.

SEMINARIO 2021/02 CRUZ DEL SUR

Atractividad global y jacobianos nilpotentes

Viernes 15 de enero. Auditorio Prof. Manuel López Ramírez. de Matemática y Estadística UFRO. 15:30 Hrs.

Conferencista: Álvaro Castañeda, Universidad de Chile

 Abstract

En esta charla mostraremos una versión,desde el punto de vista del espectro asociado a la hiperbolicidad no autónoma, de un problema de atractividad global, el cual está inmerso en la teoría cualitativa de EDO. En relación con este problema, en un contexto autónomo, mostraremos como las aplicaciones con jacobiano nilpotente juegan un rol preponderante en la creación de ejemplos y contraejemplos a esta pregunta.

SEMINARIO 2021/03 CRUZ DEL SUR

¿Se puede oír la forma de un tambor?

Viernes 22 de enero. Auditorio Prof. Manuel López Ramírez. de Matemática y Estadística UFRO. 16:30 Hrs.

Conferencista: Emilio Lauret, Universidad Nacional del Sur, Bahía Blanca, Argentina

 Abstract

El espectro del operador de Laplace asociado a un objeto geométrico compacto (e.g. un dominio acotado en el espacio euclídeo, o una variedad Riemanniana cerrada) codifica el sonido que éste haría al ser golpeado. Pensando a un dominio acotado del plano como un tambor, Mark Kac escribió en 1966 el artículo "Can one hear the shape of a drum?" que popularizó la geometría espectral inversa, área que estudia en qué medida la información espectral (i.e. sabemos cómo se oye el tambor al ser golpeado) determina la geometría (i.e. la forma del tambor). En esta charla daremos una idea general del problema, repasando su historia y considerando diversos ejemplos de variedades Riemannianas isospectrales
(i.e. tienen el mismo espectro) que no son isométricas (i.e. tienen distinta forma). Será destinada a un público amplio, sin necesidad de tener conocimientos previos en geometría Riemanniana.