Algebraic Geometry and Linear Algebra |
Gian Pietro Pirola |
University of Pavia (Italy) |
Exercises |
Exercise 1. Let \[K\] be a field and \[M=M_{n,m}(K)\] be the vector space of \[n\times m\] matrices. Consider the set \[D_k(K)=D_k=\{A\in M:\ {\rm rank}(A)\leq k\}\] and let \[U_k(K)=U_k=D_k\setminus D_{k-1}\] be the subset of rank \[k\] matrices. |
Consider the cases \[K=\mathbb{C}, \mathbb{R}\] and \[\mathbb{Q}\] respectively. |
|
Exercise 2. Let \[\mathbb{C}^{N+1}\] be a complex vector space of dimension \[N+1\] and \[\mathbb{P}^N\] be the associated projective space of lines. Consider \[S\subset \mathbb{C}^{N+1}\times \mathbb{P}^N\] defined by \[S=\{(v, L):\ v\in L\}.\] The projection \[\pi:S\to \mathbb{P}^N\] defines a line bundle: \[\mathcal{O}(-1).\] |
|
Exercise 3. Let \[E\] be a vector bundle of rank 2 having Chern polynomial \[c(E)=1+tc_1(E)+t^2c_2(E)\] . Compute the Chern classes of \[E\otimes E\] and of \[Sym^2(E)\subset E\otimes E\] the symmetric vector bundle (Hint: use the splitting principle, that is assume \[E=A\oplus B\] , and the formula \[c(F\oplus G)=c(F)c(G)\] ). Generalize to the cases |
|
Exercise 4. Let \[S\] be a projective surface. Set \[H^{p, q}(S)=H^q(S, \Omega^p)\] , where \[\Omega^1\] is the holomorphic cotangent bundle of \[S\] and \[\Omega^p=\wedge^p\Omega^1\] , and consider the maps \[\phi:\wedge^2H^{1,0}(S)\to H^{2,0}(S)\] and \[\mu:H^{1, 0}(S)\otimes H^{0, 1}(S)\to H^{1, 1}(S)\] . Let \[K\] be the kernel of \[\phi\] and \[C\] be the kernel of \[\mu\] . Let \[q={\rm dim}H^{1, 0}(S),\ p_g={\rm dim}H^{2, 0}(S),\ h^{11}={\rm dim}H^{1, 1}(S)\] |
|